

1



Abstract— The artifact created for this is a non-combat

roleplaying game creation system. Quests and characters are

procedurally generated through XML data. This article details

the concepts behind the systems in the demo.

Index Terms— Video Games, Roleplaying Games or RPGs,

Procedural Generation, No Combat System

I. INTRODUCTION

HE author has explored various ways in which to use

procedural generation systems for a RPG with no combat,

chiefly through character and quest procedural generation. The

author created the artifact within seven months.

 Roleplaying Games (RPGs) traditionally rely heavily upon

combat, but often include other elements such as quests, stats,

skills, minigames, and procedural generation. Very few

developers have tried to completely remove combat from a

RPG as most RPG systems directly or indirectly serve combat

as an ends. If there is no combat system, then a game creator

must provide interest and replayability through alternative

means.

II. RESEARCH REVIEW

A plethora of games have incorporated procedural generation

in order to make them more interesting; this could be through

dungeon or world generation [1] [2] [3] [4], character

generation [5] [6] [7], or other methods such as event and story

generation [8] [9] [10] [11]. Procedural generation is where the

game generates some or all of its own content on the fly,

through algorithms that may or may not accept human-designer

input [9]. The most common way to use procedural generation

in games has been to generate the world or dungeon that the

player explores [3]. Some methods for dungeon or world

generation include cellular automata, generative grammars,

generative algorithms, and more [3]. One of the more advanced

and interesting methods for generating content is through a

genetic algorithm (an artificial intelligence), in which the

computer generates several variants, judges which ones have

the best results, then mutates its formula to try to achieve better

results in the next iteration [3].

Alexander Baird is a student at Southern Methodist University Guildhall

(SMU Guildhall) (e-mail: atbaird@smu.edu), he received his bachelor’s

degree in May 2015 (B.S. Computer Science) from SMU and is presently
working towards his Master’s degree at SMU Guildhall.

Squirrel Eiserloh is a professor at SMU Guildhall. Squirrel Eiserloh is

a game programming faculty Lecturer at SMU Guildhall, Southern Methodist
University’s game development graduate program. Since he graduated from

One popular method for procedural map generation is to take

human-authored modular content and have the computer

generate a floor using those pieces [1] [2]. Mabinogi takes a

much simpler approach to the dungeon generation in that it does

eschews the introduction of many complex rooms into its

dungeon generation [1]. Rooms with locked doors are always

preceded with monster rooms which contain the correct keys,

insuring that those keys match the doors after them [1]. These

dungeons still make room to produce dead ends for the

dungeon, which abstracts how linear these dungeons are [1].

Mabinogi always produces results that enable the player to fully

explore the dungeon [1]. Although Mabinogi has a

minimalistic layout for many rooms and hallways, the pathing

is always interesting in that each dungeon has different scenery;

most dungeons use regular stone walls, but the outdoor

dungeons use lots of trees and plants [1].

Runescape on the other hand takes a similar but more

complex approach to dungeon generation, having not just doors

that require keys, but also skill doors and puzzle doors [2]. Due

to this complexity, some of chunks of the dungeon floor tend to

be always locked off to the player; this is as the dungeon

generates skill doors above the player’s skill level [2]. Players

which possess a certain skill (herblore, aka potion making) at a

high enough level can overcome these the requirements they do

not meet for these special doors by crafting potions that give

them temporary buffs [2]. However, that option is not always

available, and the dungeon fails to account for when the player

does not have the appropriate herblore level to make said potion

[2]. One could argue that this is broken design, but at the same

time it is incentive for the player to train the skills to which the

player may previously have turned a blind eye [2]. FTL: Faster

Than Light also uses procedural generation to create its Beacon

and Galaxy maps, each beacon treated as a dungeon room with

a single event contained within, while the Galaxy the player is

in defines the overarching theme of the events the player might

encounter [8]. Audiosurf is a good example of procedural map

generation in a game with no combat; Audiosurf generates the

map and obstacles based on the sound waves from a song [4].

Taylor University in 1996 (B.A. Physics) he has been working as a professional

game developer in the Dallas area, contributing to over a dozen commercial

game titles. He co-chairs the Dallas chapter of the IGDA, and coordinates the
Math for Game Programmers sessions at the annual Game Developers

Conference in San Francisco.

Procedural Systems for Non-Combat RPGs

Alexander Baird and Squirrel Eiserloh

T

mailto:atbaird@smu.edu

2

Figure 1: FTL: Faster than Light Beacon Map view.

Some games have also incorporated abilities and skills that

are non-combat focused, usually to break up the core gameplay

flow [1] [2]. These games typically use abilities to enable the

player to craft equipment or consumables to sell or use [1] [2].

Runescape chooses to make non-combat skills all generic, and

good for casual play [2]. Each skill has a unique animation, but

that is where the interest ends, as the tasks are generally just

click-and-watch as the character performs the action [2];

Mabinogi takes the opportunity to transform these non-combat

skills into its own mini-games [1]. For example, in order to

smith weaponry, a clickable mini-screen opens for the player

with specific dots on it for the player to click; the closer to the

center of each dot the player clicks, the better quality the

equipment [1]. Skills have also been used in Runescape’s

procedurally generated dungeons, doors lock off the player

unless she has the correct skill level [2]. Mabinogi also makes

skills interesting to collect by starting the player with a handful

that they know about, and she must perform quests and talk to

Non-Player Characters (NPCs) in order to obtain the rest [1].

This approach could be interesting if combined with procedural

world generation [1].

Another potential way to use procedural generation is by

generating the story, or events within the game [9]. In games

like this, it is better to view the story less like a line and more

like a collection of episodes or volumes, since a fair number of

the events that occur will likely be a bit more disconnected from

the rest [9] [8]. Coding for these chains of events is best done

by planning them out as partial order plans; a partial order plan

defines a list of requirements, a list of actions to be taken if

those requirements are met, but does not explicitly define which

event explicitly comes before another [12]. After which, it is

important to enable the ability to define location requirements

for the associated entities; e.g. for NPCs to listen to their normal

behavioral scripts and give priority to the story script when it

calls for their participation [12] [13]. Some of this can be seen

through Crusader Kings II in which the NPC kingdoms,

initially, follow a particular chain of events at the start of the

game [6]. From there, they eventually run based on the regular

behavior scripts to try and win the game, changing how they

behave based off the traits of each family member of the ruling

family [6].

Façade is a game prototype that uses an artificial intelligence

(AI) to procedurally generate narrative based on the player’s

interactions with the world and the two NPCs (Grace and Trip)

[10]. This keeps the game interesting by changing out how it

starts each time played, as well as change the story based off

the player’s decisions; Façade also avoids centering around

combat by instead being built around drama [10]. The player’s

primary way to interact with the NPCs is to type out a line of

text and hit enter; from there the AI recognizes key words in the

sentence and selects the closest matching event to trigger [10].

The slight changes are enough to make it replayable and

guarantees each playthrough is unique [10].

Another example of procedural story generation in action can

be viewed through Versu [11]. Versu is a system for creating

procedurally generated stories, which focuses on agent-driven

story generation [11]. Agent-driven story generation involves

characters reacting based on other characters’ actions, as well

as their own personallity traits (likes, dislikes, beliefs, and so

on); this allows characters to act independently and for their

roles to be easily interchangeable within the story [11]. Versu’s

big difference from Façade is that Façade’s story generation is

based on specific events; this forces characters to have to follow

the explicit script laid down by an event [10] [11]. That also

makes it to where Façade’s characters can take longer to change

out or make new characters for events [10] [11].

In FTL: Faster Than Light, the beginning and end points of

the story are set in stone, but the events along the way are

randomly generated and follow a particular theme based on

which galaxy the player is presently in [8]. It is worth noting

that if the depth, breadth or complexity of events is lacking, that

the player may eventually catch on to the procedural generation

occuring in the story, and grow bored; though it may take

several playthroughs to notice [8]. Designers who intend is to

combine procedural storytelling with procedural world

generation, should consider the complexity of the world

required by the game [13]. FTL: Faster Than Light kept their

world generation very simple so as to avoid the complex issue

of defining locations with more granularity than their galaxies

and solar system waypoints [8]. If the events and world have

complex location requirements, the world needs to be able to

inform the event system important objects and locations [13].

Figure 2: Runescape a player using a big net to fish.

In the space of procedurally generating characters, it is

important to focus on not just appearance a character; stats,

personality, and other traits also play a role in procedurally

3

generating a character [6] [5]. In Crusader Kings II, the

changing traits of the ruling characters can cause the player to

have to change her play style in order to continue to progress

[6]. For exmaple the player could have been playing with

diplomacy before, but then suddenly their current ruler passes,

and the new ruler is a horrible diplomat, but a good military

leader [6]. In Middle Earth: Shadow of Mordor, character

procedural generation is used to generate unique orcs with

different buffs and weaknesses [5]. These orcs might die only

once and be forgotten, or might constantly come back to hunt

the player [5]. This type of procedural generation can enable

the player to get attached to particular characters due to their

personallity and perserverance [5] [6]. This type of procedural

generation also pairs well with procedurally generating events;

Middle Earth: Shadow of Mordor used procedurally generated

events as missions for hunting the lead orcs [5].

Figure 3: Middle Earth: Shadow of Mordor Orc Traits

screen.

Another example of Procedurally generated characters can be

viewed through Bad News: a mixed reality game where the

characters and map are procedurally generated before the

performance [7]. In the game, the player’s objective is to

discover a deceased character’s identity and notify their next of

kin; the commands for the game are spoken allowed such that

an operator (or “wizard” as they refer to the role) makes

alterations to the simulation, characters are performed by live

actors [7]. The characters being procedurally generated, as well

as the town layout, makes it to where each experience is fun,

and guarantees that past players can not spoil the fun; the actors

have a card with what they are suppose to look like, how they

act, and what topics they know about [7]. The game does

provide a good example of how procedurally generating

characters can provide unique interactions and a fun experience

[7]. Simple changes in personallity change how to persuade a

charcter to cooperate, or what they are able to say on certain

matters [7].

As far as procedurally generating characters or items is

concerned: its worth it to investigate changing colors of in game

sprites on the fly; not only does it pair well with procedurally

generating characters, but it would also leads to allowing

player’s to customize their character’s appearance [6] [1].

Crusader Kings II procedurally generate its character

appearances; however, it also gives the player the option to

change the names and portraits of the characters she controls.

In Mabinogi players receive equipment with procedurally

generated colors from shops and monster drops; however there

are dye items in the game that players spend absorbinent

amounts of gold in order to change their equipments colors to

what they like [6] [1].

In order to create an RPG without a combat system, it is

important to pick out the stats and skills that are used carefully,

as these will enable the player’s ability to move around the

world as well as what can be used to effect the NPC

personallities [2] [5] [1] [6]. After which, it is a good idea to

look at procedurally generating a series of events, and

associated characters into the world [8] [9] [13]. The time

needed for a game to be develop increases rapidly the more

content is needed to be procedurally generated [3] [13] [12].

This is as the algorithms used for procedurally generating

content needs to be made smarter in order to avoid the game

stagnating [3] [13] [12].

III. METHODOLOGY

The Game: Design

 The artifact created for this thesis is a role playing game

creation system developed within a custom C++ game engine.

The system allows for procedural generation of characters and

quests, all of which are defined through data. This allows the

designer to easily alter gameplay and piece together whatever

events and content a designer could want and are read in at the

start of the program. The map uses a tile based grid, while

characters move freely without regard to the grid. The player

can interact with various objects in the world, talk to NPCs and

perform quests for those NPCs.

Figure 4: A sample screenshot from the artifact, showing a

map, plus three characters.

The Game: Implementation

 The artifact uses a custom C++ engine which renders

graphics via OpenGL, and plays sound through FMOD. The

majority of the content in the game is data driven, as it makes it

easier for a designer to author the user experience, and allows

for easy customization of the game. Game aspects that are data-

driven include: Agents, Agent Stats, Features, Global

Variables, Hair, Clothing, Map Data, Map Files, Name

Generators, NPC Attributes, NPC Jobs, Quests, Sounds,

SpritAnimations, Sprite Resources, and the dialogue system.

Sprite Resources contain a file location for a texture, some

texture coordinates, and a resource name to refernce it within

the game (for example the image for a single grass tile). Sprite

4

Animations use Sprite Resources for individual frames, as well

as an associated duration per frame.

<SpriteResources>

<SpriteResource resourceName='human_baseForward0'
 textureLocation='DataSet1/Images/Characters/hu
man_base.png' spriteBounds='0.0, 54.0, 15.0, 36.0'/>

<SpriteResource resourceName='human_baseForward1'
 textureLocation='DataSet1/Images/Characters/hu

man_base.png' spriteBounds='16.0, 54.0, 31.0, 36.0'/>
<SpriteResource resourceName='human_baseForward2'
 textureLocation='DataSet1/Images/Characters/hu

man_base.png' spriteBounds='32.0, 54.0, 47.0, 36.0'/>
</SpriteResources>

<SpriteAnimation

 spriteAnimationName='human_base0_walkForward'
 defaultIntervalBetweenFrames='0.125'
 animationMode='loop' reverseDirection='false'>
 <Frame resourceName='human_baseForward1'/>
 <Frame resourceName='human_baseForward2'/>
 <Frame resourceName='human_baseForward1'/>
 <Frame resourceName='human_baseForward0'/>
 </SpriteAnimation>

Figure 5: An example of several sprite resources and an

associated sprite animation XML.

An Agent contains the information for every single character

in the game, and has two variants (Player and NPC). Agents

also have Hair and Clothing which are a series of animations.

Tile Definitions define whether a tile is solid or not, as well as

what sprite the tile has. Name Generators are used to generate

a name for each Agent depending on gender (male, female) and

race (orc, elf, human, etc.). Map Files contain file paths for a

map’s image and data, such as tile events, agents to spawn, and

quests to use. Quests are a bunch of events and state data.

Quest Events are a list of requirements that must be met before

it can run, and two lists of triggers to perform when ran. For

example, when one event triggers on a quest, the dialogue

displayed for an Agent could have changed next time the player

speaks to it. Features are any cosmetic or interactable objects

in the game; for example, the doors in the game are Features

that allow the player to move through the tile on which they are

placed. Agents, Clothing, Hair, and Features are all Entities.

The dialogue system handles displaying text and speech

bubbles when the player interacts with an NPC.

<AgentGenerators>
 <AgentGenerator Name='Human'>
 <!-- ... -->
 </AgentGenerator>
</AgentGenerators>

Figure 6: An example Agent Generator declaration.

The quests and the different Entity types each use a factory

paradigm; this paradigm is where data is read in from XML,

and parsed into a template, and when called spawns an entity as

per the specifications of the data (procedurally generating as

necessary). For example, the data for an Agent is read in and is

named Villager, thus when a Villager Agent is needed, it will

use the Villager Agent generate to spawn one. A resource

database paradigm is used each of the different parts of the

dialogue system, Sprite Resources, Sprite Animations, Map

Files, and Tile Definitions; this paradigm loads in the data from

XML, and maintains only one copy of the entity for the code to

reference. This variant is necessary as there is no need for

multiple versions of this data to exist; e.g. why would the

designer want there to be multiple copies of the dialogue

“what’s up?” in as many different places?

Entity* playerEntity =
 AgentGenerator::SpawnPlayerInAgentGeneratorByAgentName(
 "human", vec2_pos, map_ptr);
Entity* npcEntity =
 AgentGenerator::SpawnNPCInAgentGeneratorByAgentName(
 "human", vec2_pos, map_ptr);

Figure 7: Examples of how to spawn different Agents from the

Agent Generators.

Map and Tile Definitions

 A Tile Definition is a set parameters for a tile to follow; it

contains a color code, four layers of sprite resources, as well as

whether the tile is solid or not. It is also possible to define

events to trigger when the player enters, touches, or exits the

tile. Tile variantions can be added by naming alternative sprite

resources and a percentage chance for them to occur. This

allows for a grass tile to have variations.

Figure 8: 20x20 source map image; 1 pixel is 1 map tile.

<TileDefinitions>
 <TileDefinition name='grass1_1' MapCode='0,255,0'
 resourceName='grassTile1_1'
 altResourceName='grassTile1_1_alt'
 altResourceChance='0.5f' solid='false'/>
</TileDefinitions>

Figure 9: Example XML TileDefinition.

 However, most designers are not going to want to define a

unique tile definition for each potential part of a house, then

painstakingly change the colors used per tile of the house. In

order to handle this, special case XML nodes are required

within the Tile Definition XML. Based on a set of user defined

rules, a special case overwrites the originally set parameters

with a new set. A special case uses requirement tests against a

named Tile Definition or the same one the designer is adding

the special case to; these requirement tests can be performed

against the same or different tile definitions to the north, east,

south, and west. Each tile definition also contains a list of

5

definition names to treat the same as it, for when the special

cases are testing for it. This allows for a stove tile to be given a

unique tile definition and placed within the house without the

entire roof shifting down several tiles (if the roof placed through

special cases).

Figure 10: A screen shot of the brown house and lake tile

definitions in action.

<TileDefinitions>
 <TileDefinition name='BrownHouse' MapCode='185,156,98'
 solid='true' topLayerCanDisappear='true'
 topLayer2CanDisappear='true'>
 <SpecialCase IfSame='North==0,South>0,East>0,West>0'>
 <ToSet TileCoords='0,0'
 debugName='NorthTileBrownBuilding'
 bottomResourceName='grassTile1_1'
 resourceName='wall_brown_NC'/>
 </SpecialCase>
 <!-- ... -->

</TileDefinition>
</TileDefinitions>

Figure 11: Example XML for TileDefinitions with special

cases.

 The next important ability for the map is to be able to define

tile events, as well as how to spawn in quests and entities. For

this, there is an XML file associated with each map. This data

is read after the image data is fully read. The Map Data XML

node defines what music on the map, and how the camera is

handled for that map. By default, no music plays on the map,

and the camera is set to clamp to the edges of the map (clamp

or unconstrained). Within the Map Data node, a designer

defines what Tile Events, Features (interactable objects), NPCs,

and Quests entities are placed in the map, as well as where.

Positioning of the entities can be totally random or picked from

a list of positions defined by the designer. Tile Events are

functions that run based on when an Agent enters, leaves, or

touches a Tile, e.g. they are used for switching Maps when the

Player enters a tile. For an example of Map Data in XML, see

appendix 1.

<MapFiles>
 <Default DialogueName='Swamp Town'
 Image='Data/Maps/TestMap.png'
 MapData='Data/XML/MapData/MapData.TestMap.xml'/>
 <Map1Test DialogueName='Spiral Lake'
 image='Data/Maps/TestMap2.png' mapdata='Data/XML/MapD
ata/MapData.TestMap2.xml'>
 <MapDependencies>
 <Default />
 </MapDependencies>
 </Map1Test>
</MapFiles>

Figure 12: An example Map Files in XML.

Procedural Character Generation and Features

 The NPC and Player classes both inherit from the Agent

class, where an Agent is any character or mobile entity in the

game. Features are different from agents in that they define

non-moving entities that can be either cosmetic or interactible.

Features can also change how the tiles they are on interact with

the player.

Figure 13: Class diagram for Entities.

 Before creating an Agent Generators, several other data types

must be defined, including: Agent Stats, Sprite Resources,

Sprite Animations, Hair Generators, Item Generators for

Clothing, NPC Attributes, and NPC Jobs. NPCs with dialogue

reference a corresponding Dialogue Segment by name, thus the

that will also need to be defined.

 Agent Stats are an integer range associated with a name.

Agent Stats first are defined in their common XML folder; the

stats read here will be applied to every agent that is ever created.

At the start of the game, the stats will be procedurally generated

based off the min and max set at the start; if the stat is changed

later, its new value is clamped to be within the min and max.

The Agent Generators can explicitly set its own ranges for each

Agent Stat. When this happens, the Agent will procedurally

generate its stats based on the Agent Generator’s stat ranges in

6

place of the original’s. After the stat ranges are procedurally

generated, the min and max on the Agent is set back to the

default’s; this allows for the stat ranges to be increased or

decreased within the normal stat range accordingly. For

example a stat of strength is defined with a min and max of 0 to

100, then the Agent Generator defines a new stat range for it of

10 to 10; this leads to the Agent Generator procedurally

generating a strength stat of 10, and then that agent has a

strength min and max of 0 to 100. This is useful as it allows for

an Agent Stats to be increased or decreased that were originally

defined (such as if the Player’s strength was increased by 5 via

a Quest’s reward).

<AgentStats minimum='0' maximum='100'>
<Dexterity abbreviation='dex'/>
<Intelligence abbreviation='int'
 minimum='0' maximum='100'/>
<!--
 Default will be 0 to 100, just putting
 this as an example. -->

</AgentStats>

Figure 14: Example XML of Agent Stats.

<AgentGenerators>
<AgentGenerator Name='Player'
 DefaultImage='human_base0'

 MovementSpeed='2.f'>
<!-- ... -->
 <StatRanges>
 <Strength min='10' max='10'/>
 <Dexterity min='10' max='10'/>
 </StatRanges>
<!-- ... -->

</AgentGenerator>

Figure 15: An example Agent Generator defining custom

agent stat ranges in its XML data.

NPC Jobs are procedurally generated from a list of jobs the

corresponding NPC’s stats meet. These jobs have a name, and

an associated set of Agent Stat requirements. The NPC Jobs an

NPC can have can be limited per Agent Generator by defining

a list of Jobs for the generator. If the NPC does not qualify for

a job, then it is labeled as jobless.

Figure 16: An NPC saying what their name and job is.

 NPCs also need to define what they do on update; this is

achieved through NPC Behaviors. NPC Behaviors in this

artifact include: look around, talk, and wander. NPC Behaviors

are a series of classes that inherit from the NPC Behavior class,

and each have custom code (two virtual functions must be

defined for each of them). One virtual function defines how its

calculates utility, and the other is the function that performs the

chosen behavior’s action. The NPC on update takes its full list

of behaviors and finds the one with the highest utility score and

runs it for that frame. Features also use a system very similar

to NPC behaviors, but explicitly for Feature Behaviors. These

Feature Behaviors define what to do on interact as well as what

to do to a particular tile it is spawned onto.

The NPC Behaviors also use a self registration paradigm in

order to make themselves easy to spawn (this also has the added

benefit of limiting the number of includes a given file needs to

have in order to spawn an NPC Behavior by a particular name).

The self registration paradigm involves an external class

(Registration Helper) being defined with an associated name

and two functions that spawn the desired class (one for use with

an XML node, one without); the Registration Helper loads itself

onto a list upon being constructed. Then for each variant of the

desired class, a static Registration Helper is defined; this

paradigm takes advantage of game side code, in that all of it is

compiled before run time, allowing all of the Registration

Helpers to be added to the list before any XML data is read.

The classes that use the self registration paradigm include: NPC

Behaviors, Feature Behaviors, Tile Events, Dialogue

Requirements, Dialogue Actions, Quest Requirements, Quest

Triggers, and variations of the Item class.

 Hair and Clothing data has a similar yet simpler structure

than characters: a name, default image, and sprite animations

for each direction. Hair can define specific colors from which

to use, and clothing is able to define an alternative set of

animations. For example, Clothing just needs alternative

animations, but a potion would need a declaration of what to do

when used. Hair and Clothing can then be assigned per agent

generator for procedural generation. Hair and Clothing both

have gender specific options.

<HairGenerators>
 <HairGenerator name='male_Townsfolk_hair1'
 isDefault='true' dialogueName='Simple Hair'
 defautltimage='male_townsfolk_hair1_back0'>
 <Colors>
 <Red value='0' />
 <Brown value='1' />
 <Black value='2'/>
 <!-- ... -->
 </Colors>
 <Animations>
 <Animation direction='south' animIdx='walk'
 animationName='male_townsfolk_hair1_forward' />
 <Animation direction='north' animIdx='walk'
 animationName='male_townsfolk_hair1_back' />
 <Animation direction='west' animIdx='walk'
 animationName='male_townsfolk_hair1_left' />
 <Animation direction='east' animIdx='walk'
 animationName='male_townsfolk_hair1_right' />
 </Animations>
 </HairGenerator>
</HairGenerators>

Figure 17: XML example Hair Generator.

7

 Names are procedurally generated for each character. In

order to accomplish this, name generators and name sets are

defined through XML. A name set is key with a bunch of

names. Name generators contain several name sets, with a

defined order to use the name sets, per gender. The name sets,

when called by the name generator, then randomly generate the

name to use, avoiding using the same name as last time when

possible.

<NameGenerators>
 <VillagerNameSet
 male='first_male,last'
 female='first_female,last'>
 <first_male>
 <Bill/>
 <Buck/>
 <Phil/>
 <Ralph/>
 <Will/>
 </first_male>
 <first_female>
 <Claire/>
 <Clem/>
 <Jennifer/>
 <Sally/>
 <Sarah/>
 <Sally/>
 </first_female>
 <last>
 <Smith/>
 <Farmer/>
 <Foreman/>
 </last>
 </VillagerNameSet>
</NameGenerators>

Figure 18: An example Name Generator in XML.

Maps can then define what agents and features they wish to

spawn from their XML data file. They can also specify a list of

interesting positions for the entities when spawning them, as

well as the percentage chance to actually use the data, and how

many to spawn.

<MapData music='Village1'
 constrainCameraBounds='true'>
 <!-- ... -->
 <FeaturesToGenerate>
 <Door numberToSpawn='3'>
 <Position position='7,9'/>
 <Position position='14,1'/>
 <Position position='14,14'/>
 </Door>
 <Firepit>
 <Position position='1,3'/>
 </Firepit>
 </FeaturesToGenerate>
 <AgentsToGenerate>
 <Villager
 number='1' Job='Smith' chance='0.5'/>
 <Villager number='3-5'/>
 </AgentsToGenerate>
 <!-- ... -->
</MapData>

Figure 19: XML Map Data for spawning features and

agents.

Dialogue Segments, Groups, and Choices

NPCs open Dialogue Segments by name when the player

attempts to talk to them. A Dialogue Segment at its base form

is a name with a string of text and an associated Speech Bubble.

The text can be indefinetly long and can be defined through an

attribute on the dialogue segment node, or through child text

XML nodes; all of the text encountered is combined from

attribute to top child down to bottom child. Once the full string

is read in, the dialogue segment parses each individual word

into text pieces. The text pieces will determine if the word is a

variable name or just more text; variable names are denoted by

the dollar signs on either side of some enclosed text. When the

dialogue segment is called by an NPC, it restrings the text

pieces together, and replaces the variable calls with any valid

values it finds; as an error indication, it will spit the variable

name back out if the game is unable to find any text under that

variable name. The dialogue segment. while stringing the text

pieces together, will also places the strings on separate pages as

needed (there is a limit of two lines of text per page).

<DialogueSegments
 SpeechBubble='SpeechBubble'>

<Greeting1
 uniqueGrouping="greeting"
 text="Hello my name is $MyFirstName$.">

 <Triggers>
 <GlobalSetVariableFloat
 Variable="Greeting1Encountered"
 value="1.0"/>
 </Triggers>

</Greeting1>
<Greeting2 uniqueGrouping="greeting"

 text="Hi, I'm $MyFirstName$. I am a Job."/>
 <LongWindedVillagerGreeting>
 <Text text="Hello, I am $MyFirstName$."/>
 <Text text=" I love my job as a Job."/>
 <Text text=" I still wish I could spend more time"/>
 <Text text=" with my family and friends though."/>
 </LongWindedVillagerGreeting>
</DialogueSegments>

Figure 20: Several example dialogue segments in XML.

 Dialogue Groups contain the names of multiple Dialogue

Segments; a dialogue segment can add itself to a dialogue

group. The dialogue group handles procedurally generating

which segment to call, and will attempt to guarantee that the

same dialogue segment as last time does not open unless there

is no other option. Additionally, Dialogue Segments can define

a set of requirements before a Dialogue Group can open them;

e.g. before the dam breaks, the NPCs use joyful greetings when

the player speaks to them, but after the dam breaks, the NPCs

constantly mention and complain about the dam. Non-existant

dialogue groups will be created on demand. However, dialogue

groups can also be created through their own XML node, which

allows for declarations of group wide dialogue event triggers

(these are triggered whenever a dialogue segment in the group

is closed).

8

<DialogueGroupings>
 <Greeting>
 <Triggers>
 <GlobalSetVariableFloat
 Variable="GreetingEncountered"
 value="1.0"/>
 </Triggers>
 </Greeting>
</DialogueGroupings>

Figure 21: An example of a Dialogue Group with a trigger.

Dialogue Segments also contain Dialogue Choices. A

Dialogue Choice is an associated text label along with a series

of triggers and settings for if that choice is picked by the Player.

The Dialogue Choice menu displays once the player has read

all of the text within the regular dialogue segment.

<LongDialogueExampleWithChoice>
 <Text
 text="Hey, did you know monsters are coming back?"/>
 <Decision>
 <Yes1
 DialogueToOpen=
 "LongDialogueExampleWithChoiceSelectionYes">
 <Requirements>
 <GlobalCheckVariableFloat
 Variable="Choice1" value="==0.0"/>
 </Requirements>
 <Triggers>
 <GlobalSetVariableFloat
 Variable="Choice1" value="1.0"/>
 </Triggers>
 </Yes1>
 <Yes2 DialogueToOpen=
 "LongDialogueExampleWithChoiceSelectionYes">
 <Requirements>
 <GlobalCheckVariableFloat
 Variable="Choice1" value="==1.0"/>
 </Requirements>
 <Triggers>
 <GlobalSetVariableFloat
 Variable="Choice1" value="0.0"/>
 </Triggers>
 </Yes2>
 <No DialogueToOpen=
 "LongDialogueExampleWithChoiceSelectionNo"/>
 <Maybe DialogueToOpen=
 "LongDialogueExampleWithChoiceSelectionMaybe"/>
 </Decision>
</LongDialogueExampleWithChoice>

Figure 22: An example dialogue segment with dialogue

choices in XML.

 Variable names can also be used to access information off of

specific quests. The variables can access agent and text

variables off a quest. For example, it can get the name of a

character’s brother or sister, and still change based off the

character’s gender. For a variable name to know it should get

information out of a quest, every unique name needs to be

separated by periods. For text quest variables, it needs: the

quest name, period, the text variable name. For pulling

information off of an agent in a quest, such as the character’s

name, it needs: the quest name, period, the character’s quest

variable name, period, “FirstName”.

Figure 23: Screenshots of an NPC with a procedurally

generated sibling.

Procedural Quest Generation

 A procedurally generated Quest is complex for the author of

said quest to write, but is easy in concept. Variables for the

quest need to be defined, especially if any way to access the

player is needed. The supported variable types are characters

(NPC and player), text for inserting into dialogues, floats, and

booleans. Characters can be explicitly defined as an NPC or a

player variant. These variables are used later on throughout the

life of the quest. After defining the variables, the instructions

for spawning Agents and Features are needed. If a pre-existing

agent exists that meets the requirements, and is not already

claimed by a quest, then the quest will claim it and move it to

the intended position. Otherwise the quest will spawn the a new

entity with the provided instructions. The variable name for

these entities must be assigned. By default, features will always

be spawned as new.

 The most intricate part of the quest system are the quest

events. Quest Events require that a set of requirements and

triggers be defined for them. An event does not run unless all

of its requirements are met. If the events requirements are met,

then the event calls of all of its triggers. Both the requirements

and triggers use custom code for each variant, and use a self

registration system. Quests Events have two lists for triggers,

the regular triggers which occur before performing any

interaction, and the post triggers which occur afterwards.

 Quest Triggers and Requirements can do a fair number of

things, such as: changing npc dialogue segments, or setting both

local variables to the quest and global variables. As such Quest

triggers and requirements both use their own versions of the self

registration paradigm.

After a quest is fully written out, the quest can be spawned

through a map’s data file. On the map data file, an array of

positions can be defined for each quest NPC variable; the quest

will procedurally generate which one to use and move the NPC

to it. This allows for more designer control over the quest. For

an example of a quest in XML, see Appendix 2.

9

Figure 24: The younger sibling from the “Find my Sibling”

quest, but at the three different locations.

A quest agent or feature can be exposed as a global variable;

this is so as to give other quests the ability to have access to it

and also avoid spawning another NPC for the same intended

use. This is done by declaring an attribute of

GlobalVariableName on the Agents or Features to generate

within the quest; if the attribute is set, it will attempt to pull

from the global pool of variables for this entity instead of

spawning or claiming an unused entity. This was done so as to

allow for basic quest chains, but does not allow for procedurally

generating quest chains by itself.

IV. POST MORTEM

Exploring procedural generation systems was at the core of

this thesis’ goal, however the intention with the artifact

originally was to create a full fledged game instead of a demo.

Various existing elements of the artifact proved to take far more

time than originally expected; this lead to various planned

features (e.g. player skills, and minigames) being cut, as well as

the chance to create even more maps and quest examples.

However, the systems in this artifact are the essential pieces of

the original purpose: to explore procedurally generating content

for characters and quests. Thus their funtionallity and level of

polish have taken precident over any additional features.

The procedural generation systems for characters and quests

are flexible; it is easy to add new code onto the paradigms as

needed. Whenever a designer needs a new behavior,

requirement or trigger, they need only ask a programmer, and

they can create the content within a reasonable short time span.

Additionally the use of XML with these systems allows

designers to rapidly develop upon quests, character generators

or other content.

Most of the development time was spent on setting up the

various paradigms as well as the ability to read in XML data.

This was critical to have as, although it is slow create the initial

code, it makes future work on these systems incredibly easy.

Supporting XML also allows designers to focus on the

important information, instead of having to surf and alter game

code. The second time sink was in parsing the dialogue into

individual pieces; the author underestimated the complexity of

the system before starting work on it. As such there are parts

of it that could be made nicer, such as how it does not use a

paradigm to find the variable values. Procedurally generating

content was the third time sink; this was mostly due to trying to

balance the system so as to avoid the case where the same

content is repeatedly generated. E.g. first person spawned is

named Sally Moore, second person spawned is named Sally

Moore; due to the nature of procedural generation, its possible

to have this case occur, especially without additional work to

try and prevent this. The author has used a few concepts that

should mitigate this case.

What could have mitigated some of the time sink problems

would have been to pre-create a bunch of XML files at the start;

also, it would have been helpful to draw out the expected class

diagrams. The systems are highly polished at this point, but

they could have been at that point much sooner in development

had there been better planning. One way that could of sped up

creating the paradigms would have been to make them all run

through a generalized system that handles them all by type; but

the author felt that it would loose some level of readability if

that step were taken.

V. CONCLUSION

RPGs can be fun without combat, but they do require

additional content to enable them to be fun. Some examples

would be making the stories more dramatic, or having

minigames to break up the flow. The key appears to be that for

a game to be fun, monotony needs to be avoided (i.e. drama

increases suspense, minigames break up the flow, etc.).

Procedurally generating content aids in how fun a game can be

by preventing monotony, aka it guarantees a unique

playthrough occurs each time. However, procedural generation

can not stand on its own unless the game itself is relatively

small; bigger projects will need to have the procedurally

generated content affect more elements in the game as well as

add in more types of interactions with the world.

The big thing to watch out for when procedurally generating

content is feature creep. Expect procedurally generation

features to take between 1.5 to 2 times as long as the regular

version, based on how complex the generation formula needs to

be. The increase in development time required is due to the

additional time spent balancing the generation formula. The

more elements that can be limited to a smaller range of values,

the easier it is to balance the procedural generation for one piece

of data. For example, the artifact limits character genders to

male and female, and character skin color to what the shader

supports (integer values 0 through 6).

VI. FUTURE WORK

It would be good to add a weighted scale for procedural

generation onto what clothes, hair, names, and colors the

entities pick; this will make it less likely for the content to use

the same set up over and over. The quest chains need to be fully

procedurally generatable as well. This would be accomplished

by adding in quest existance dependencies as well as the ability

for a map to procedurally pick one quest from a handful.

 Also, dialogue segments need to be treated more like

cutscenes. It would be good to add some additional features to

10

dialogue segment chains. E.g. the developer could add a time

interval before the segment opens or apply effects and play

sounds. Adding emotion animations to the characters would be

a good additional feature for the system; these could be single

sprite images that spin, stretch, and move on a timer.

 A faction system and a race system would also add quite a

lot of diversity to characters in the game. These factions and

races would also need some way to define unique words based

on definable features about other characters. Having a faction

and race system would also pair well with a likeability system;

e.g. the player is of the orc race, all human npcs hate orcs, so

they will refuse to give the player information or progress

quests until the player becomes more likeable.

 The artifact presently does not have a real inventory or item

system. The author would create one such that the player could

navigate through menus in order to equip clothing or other wise.

The author would also add more item types, which could make

way for a crafting system. The crafting system that the author

prefers would use ingredients from the players inventory or the

score the player achieves in minigames. These minigames

could also add onto quest functionallity; e.g. because the player

cooked a high quality fish for an NPC, the NPC will tell the

player everything they want to know.

 The author can forsee a need for a development tool when

creating the XML data. This is as the amount of data expands,

it can quickly become harder to keep track of the names of

various bits of data. E.g. the number of dialogue segments

could grow incredibly rapidly, thus it would be easy to lose

track of what names have already been used per dialogue

segment; a development tool would mitigate the issue. The

development tool would merily verify that a given data type has

not already used a particular name, and spit out some sort of

error message when it happens. It would also need to be able

to load and save out to XML.

VII. REFERENCES

[1] Mabinogi (PC), Nexon Korea Corp., 2016.

[2] Runescape (PC), Science Park: Jagex Ltd., 1999-2016.

[3] R. v. d. Linden, R. Lopes and R. Bidarra, "Procedural

Generation of Dungeons," IEEE Transactions on

Computational Intelligence and AI in Games, vol. 6, no.

1, pp. 78-89, 2014.

[4] D. Fitter, Audiosurf, Valve Corporation, Ascaron, 2008.

[5] Middle Earth: Shadow of Mordor (PC), Warner Bros

Interactive Entertainment, 2014.

[6] Crusader Kings II (PC), Paradox Interactive, 2012.

[7] J. Ryan, B. Samuel, A. Summerville, M. Mateas, N.

Wardrip-Fruin and T. Brothers, "Bad News," Studio,

Expressive Intelligence, 2017. [Online]. Available:

https://www.badnewsgame.com/. [Accessed 26th April

2017].

[8] FTL: Faster Than Light (PC), Subset Games, 2012.

[9] S. Eiserloh, J. Forbes, J. Hamel, T. Roberson, M.

Sellers, L. Law, W. Emigh, J. Grinblat, R. Holmes, I.

Schreiber and S. Swink, "Group Report: Generative

Systems, Meaningful Cores," Project Horseshoe, 2015.

[10] M. Mateas and A. Stern, Facade, Procedural Arts, 2005.

[11] R. Evans and E. Short, "Versu - A Simulationist

Storytelling System," IEEE Transactions on

Computational Intelligence and AI in Games, vol. 6, no.

2, pp. 113-130, June 2014.

[12] Y.-G. Cheong, M. Riedl, B.-C. Bae and M. Nelson,

"Chapter 7: Planning with Applications to Quests and

Story," in Procedural Content Generation in Games,

Springer, 2016, pp. 119-137.

[13] K. Hartsook, A. Zook, S. Das and M. O. Riedl, "Toward

Supporting Stories with Procedurally Generated Game

Worlds," in 2011 IEEE Conference on Computational

Intelligence and Games, 2011.

11

VIII. APPENDIX

Appendix 1: “Drylands Village” Map Data XML
<MapData Music='Village1' ConstrainCameraBounds='true'>
 <TileEvents>
 <TileEvent TileCoords='0,39'>
 <OnEnter Function='ChangeMaps' MapFile='Drylands'
 PlayerPosition='43,39'/>
 </TileEvent>
 <TileEvent TileCoords='0,38'>
 <OnEnter Function='ChangeMaps' MapFile='Drylands'
 PlayerPosition='43,38'/>
 </TileEvent>
 </TileEvents>
 <AgentsToGenerate>
 <Human number='7-9'>
 <Position positionRange='2,2,41,37' />
 </Human>
 </AgentsToGenerate>
 <FeaturesToGenerate>
 <Door number='5'>
 <Position position='34,25' />
 <Position position='28,15' />
 <Position position='28,9' />
 <!-- ... -->
 </Door>
 <RightDoor number='7'>
 <Position position='16,14' />
 <Position position='39,15' />
 <Position position='39,9' />
 <!-- ... -->
 </RightDoor>
 </FeaturesToGenerate>
 <Quests>
 <Quest Title='RepeatableDeliveryQuest'
 PercentageChanceToOccur='1.0'>
 <DrylandsVillage>
 <Positions forEntity='Foreman'>
 <Position position='20,16' />
 <Position position='9,26' />
 <Position position='17,27' />
 <Position position='14,22' />
 <Position position='15,25' />
 </Positions>
 <Positions forEntity='Baker'>
 <Position positionRange='30,26,36,28' />
 </Positions>
 </DrylandsVillage>
 </Quest>
 </Quests>
</MapData>

Appendix 2: “Find My Sibling” XML
<Quests>
 <FindMySibling title='Find My Sibling'>
 <Variables>
 <NPC VariableName='OlderSibling'/>
 <NPC VariableName='YoungerSibling'/>
 <Player VariableName='player'/>
 <Text VariableName='QuestItem1' value='Staff'/>
 <Float VariableName='QuestState' defaultValue='0.0' />
 </Variables>
 <AgentsToGenerate>
 <Human number='1' Job='Smith' AlwaysSpawn='true'
 VariableName='OlderSibling'
 GlobalVariableName='OlderSibling'
 Dialogue='FindMySiblingStart'>
 <NPCAttributes>
 <Age>
 <WhiteList>
 <Young_Adult />
 </WhiteList>
 </Age>
 </NPCAttributes>
 </Human>
 <Human number='1' Job='Smith' AlwaysSpawn='true'
 VariableName='YoungerSibling'
 GlobalVariableName='YoungerSibling'
 Dialogue='SiblingSpeechSpawnText'>
 <NPCAttributes>
 <Age>
 <WhiteList>
 <Teenager />
 </WhiteList>
 </Age>
 </NPCAttributes>
 </Human>
 </AgentsToGenerate>
 <Events>
 <Event EventName='Start'>
 <Requirements>
 <Requirement RequirementType='CheckVariableFloat'
 Variable='QuestState' value='==0.0'/>
 <Requirement RequirementType='CheckPlayerInteraction'
 Interact='OlderSibling'/>
 </Requirements>
 <Trigger>
 <SetQuestVariableFloat Variable='QuestState'
 value='1.0'/>
 <ChangeDialogue Entity='YoungerSibling'
 DialogueSegment='SiblingSpeech'/>
 </Trigger>
 </Event>
 <!-- ... -->
 </Events>
 </FindMySibling>
</Quests>

